ADVERTISEMENT

Ivermectin: a multifaceted drug of Nobel prize-honoured distinction with indicated efficacy against a new global scourge, COVID-19

WeR0206

Well-Known Member
Apr 9, 2014
23,350
30,823
1
Hurrr durrr horse dewormer! Anyone labeling this life saving drug as such is an ignorant ass who’s doing the bidding of fake news and corrupt big pharma.

https://www.sciencedirect.com/science/article/pii/S2052297521000883

“…

RCTs for IVM treatment and prevention of COVID-19​

More than 20 RCTs for IVM treatment of COVID-19 have been conducted to date, as cited above. A search of Google Scholar for meta-analyses of IVM treatment studies of COVID-19 that appeared in 2021 [13] yielded seven such studies that drew conclusions from RCTs only [6,[14], [15], [16], [17], [18], [19]]. The relative risk (RR) of mortality with IVM treatment vs. controls as calculated in four of these meta-analyses using Cochrane analysis methodology ranged from 0.25 to 0.37, with a mean of 0.31 [6,14,15,19]. The three other meta-analyses reported odds ratios of 0.16, 0.21 and 0.33, with a mean of 0.23 [[16], [17], [18]]. Six of these seven meta-analyses concluded that there was a significant [6,[14], [15], [16]] or possible [17,18] indication of the efficacy of IVM in reducing COVID-19 mortality. One found no evidence of IVM efficacy in its first version [20], reporting an RR of 1.11 for IVM treatment vs. controls, and stuck with that finding even after changing this RR value to 0.37 and correcting switched treatment and control deaths it had misreported for one study [21] in a revised version [19]. Among the most recent and comprehensive of these seven meta-analyses reported a pooled total of 31 deaths among 1101 subjects in IVM treatment groups and 91 deaths among 1064 controls from 11 RCTs, amounting to a 67% reduction in mortality, with a statistical significance for an overall effect of p = 0.005 [16]. The RCT that used the largest dose of IVM, 400 μg/kg on each of days 1-4 [22], had 2 vs. 24 deaths in the treatment vs. control groups (n = 200 each).

An objection that had been raised earlier in 2021 to the preponderance of clinical evidence for the efficacy of IVM treatment of COVID-19 as summarized above was that none of these RCTs had been published in mainstream peer-reviewed scientific journals [23]. Closing that gap, however, was the publication in 2021 in journals from major scientific publishers of five such RCTs for COVID-19 treatment [[24], [25], [26], [27], [28]], each showing multiple clinical benefits for IVM vs. controls, most of these to statistical significance at p < 0.002. Also published in 2021 were three other RCTs for IVM treatment of COVID-19: one that reported briefer hospital stays for IVM treatment short of statistical significance (p = 0.08) [29], another that compared IVM with two other drug treatment groups but not a placebo group and found no benefit [30], and an additional study conducted in Cali, Columbia with mix-ups between treatment and placebo doses as described below.

Another objection that has been raised to the RCT evidence supporting IVM efficacy was that study populations were too small [31]. Yet, it is well known in clinical trial design that highly effective drugs will establish statistically significant results with smaller sample sizes, with larger study populations required for minimally effective drugs [32,33]. But for a drug with a more modest RR of 75%, for example, the treatment and control arms would need more than 3800 subjects each to yield the same statistical significance [33]. Although large study populations are useful to screen for adverse effects (AEs) of new drugs, IVM has been used safely in 3.7 billion doses worldwide since 1987 [2,3] and is well tolerated even at much greater doses than the standard single dose of 200 μg/kg [34,35]. It has been used in RCTs for COVID-19 treatment at cumulative doses of 1500 μg/kg [36], 1600 μg/kg [22] and 3000 μg/kg [37] over 4 or 5 days with only small percentages of mild or transient adverse effects.

14-fold reductions in excess deaths with IVM use in Peru, then 13-fold increase after IVM restricted​

The clinical experience of IVM treatments of COVID-19 in 25 countries extends far beyond the RCT results summarized, yet incomplete tracking and lack of control data exclude most of this for evaluation. The record of nationally authorized such treatments in Peru provides a notable exception [42]. In ten states of Peru, mass IVM treatments of COVID-19 were conducted through a broadside, army-led effort, Mega-Operación Tayta (MOT), that began on different dates in each state. In these MOT states, excess deaths dropped sharply over 30 days from peak deaths by a mean of 74%, in close time conjunction with MOT start date (Fig. 1B). In 14 states of Peru having locally administered IVM distributions, the mean reduction in excess deaths over 30 days from peak deaths was 53%, while in Lima, which had minimal IVM distributions during the first wave of the pandemic due to restrictive government policies there, the corresponding 30-day decrease in excess deaths was 25%.
Fig. 1

  1. Download : Download high-res image (374KB)
  2. Download : Download full-size image
Fig. 1. A) Excess all-cause deaths (all ages), the national population of Peru. These decreased 14-fold from 1st August through 1st December 2020; then, after IVM use was restricted, increased 13-fold through 1st February. For A and B, y values are 7-day moving averages; for B and C, ages ≥60. Data are from Peru’s National Death Information System (SINADEF). (B) Drops in excess deaths for all states of operation MOT, an army-led program of mass IVM distributions, but Pasco, which had them on three dates. • MOT start date; ▴ peak deaths; ▪ day of peak deaths +30 days. Junin distributed IVM through local channels 13 days before MOT start. (C) Reductions in excess deaths at +30 days after peak deaths for the 25 states by extent of IVM distributions: maximal-MOT (
Image 1
), mean -74%; moderate-local distributions (
Image 2
), mean -53%; and minimal-Lima (
Image 3
), -25%. The absolute value of these reductions by state correlated with extent of IVM distributions with Kendall τb = 0.524, p < 0.002 (Spearman rho = 0.619, p < 0.001). All these data are from publicly accessible Peruvian national databases, with associated frozen datasets available from the Dryad data repository [42].

Reductions in excess deaths by state (absolute values) correlated with the extent of IVM distribution (maximal-MOT states, moderate-local distributions, and minimal-Lima) with Kendall τb = 0.524, p < 0.002, as shown in Fig. 1C. Nationwide, excess deaths decreased 14-fold over four months through 1st December 2020. After a restrictive IVM treatment policy was enacted under a new Peruvian president who took office on 17th November, however, deaths increased 13-fold over the two months following 1st December through 1st February 2021 (Fig. 1A). Potential confounding factors, including lockdowns and herd immunity, were ruled out using Google community mobility data, seropositivity rates, population densities and geographic distributions of SARS-CoV-2 genetic variations and by restricting all analysis except that for Fig. 1A to ages ≥ 60. Excess deaths were used in all analyses rather than COVID-19 case fatalities as gross underreporting of pandemic deaths by case fatalities was known to the Peruvian Ministry of Health since July 2020 [43]. This disparity has been consistently manifested in the national health database figures for COVID-19 case fatalities vs. all natural-cause deaths since that date [42]….”



MnvWQIiX.jpeg
 
Last edited:
ADVERTISEMENT
ADVERTISEMENT
  • Member-Only Message Boards

  • Exclusive coverage of Rivals Camp Series

  • Exclusive Highlights and Recruiting Interviews

  • Breaking Recruiting News

Log in or subscribe today